Motor Complete SCI 32% Lower Muscle Area & 43% Lower Muscle Density

Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury.

J Musculoskelet Neuronal Interact, 2015; 15(1): 32-41, PMID: 25730650
Moore CD, Craven BC, Thabane L, Laing AC, Frank-Wilson AW, Kontulainen SA, Papaioannou A, Adachi JD, Giangregorio LM

Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network.

Abstract

BACKGROUND: Atrophy and fatty-infiltration of lower-extremity muscle after spinal cord injury (SCI) predisposes individuals to metabolic disease and related mortality.

OBJECTIVES: To determine the magnitude of atrophy and fatty-infiltration of lower-extremity muscles and related factors in a group of individuals with chronic SCI and diverse impairment.

METHODS: Muscle cross-sectional area and density were calculated from peripheral quantitative computed tomography scans of the 66% site of the calf of 70 participants with chronic SCI [50 male, mean age 49 (standard deviation 12) years, C2-T12, AIS A-D] and matched controls. Regression models for muscle area and density were formed using 16 potential correlates selected a priori.

An illustration of watershed-guided muscle segmentation of the 66% site of the calf of a male with complete paraplegia (A) and corresponding able-bodied control (B).

An illustration of watershed-guided muscle segmentation of the 66% site of the calf of a male with complete paraplegia (A) and corresponding able-bodied control (B).

RESULTS: Participants with motor-complete SCI had approximately 32% lower muscle area, and approximately 43% lower muscle density values relative to controls. Participants with motor-incomplete SCI had muscle area and density values that were both approximately 14% lower than controls. Body mass (+), tetraplegia (+), motor function (+), spasticity (+), vigorous physical activity (+), wheelchair use (-), age (-), and waist circumference (-) were associated with muscle size and/or density in best-fit regression models.

CONCLUSIONS: There are modifiable factors related to muscle size, body composition, and activity level that may offer therapeutic targets for preserving metabolic health after chronic SCI.

High Intensity Training with Galileo Vibration

PLoS One. 2015 Feb 13;10(2):e0116764. doi: 10.1371/journal.pone.0116764. eCollection 2015.

High intensity interval training with vibration as rest intervals attenuates fiber athrophy and prevents decreases in anaerobic performance. 

Mueller SM1, Aguayo D1, Zuercher M1, Fleischmann O1, Boutellier U1, Auer M2, Jung HH2, Toigo M1.

Abstract

Aerobic high-intensity interval training (HIT) improves cardiovascular capacity but may reduce the finite work capacity above critical power (W’) and lead to atrophy of myosin heavy chain (MyHC)-2 fibers. Since whole-body vibration may enhance indices of anaerobic performance, we examined whether side-alternating whole-body vibration as a replacement for the active rest intervals during a 4 x 4 min HIT prevents decreases in anaerobic performance and capacity without compromising gains in aerobic function.

Thirty-three young recreationally active men were randomly assigned to conduct either conventional 4 x 4 min HIT, HIT with 3 min of WBV at 18 Hz (HIT+VIB18) or 30 Hz (HIT+VIB30) in lieu of conventional rest intervals, or WBV at 30 Hz (VIB30). Pre and post training, critical power (CP), W’, cellular muscle characteristics, as well as cardiovascular and neuromuscular variables were determined. W’ (-14.3%, P = 0.013), maximal voluntary torque (-8.6%, P = 0.001), rate of force development (-10.5%, P = 0.018), maximal jumping power (-6.3%, P = 0.007) and cross-sectional areas of MyHC-2A fibers (-6.4%, P = 0.044) were reduced only after conventional HIT. CP, V̇O2peak, peak cardiac output, and overall capillary-to-fiber ratio were increased after HIT, HIT+VIB18, and HIT+VIB30 without differences between groups. HIT-specific reductions in anaerobic performance and capacity were prevented by replacing active rest intervals with side-alternating whole-body vibration, notably without compromising aerobic adaptations.

Therefore, competitive cyclists (and potentially other endurance-oriented athletes) may benefit from replacing the active rest intervals during aerobic HIT with side-alternating whole-body vibration.

TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01875146.

Whole body Vibration Research Reduces Falls, Helps MS Symptoms

UTEP News Service – Originally published April 3, 2015 – By Laura L. Acosta

The first time 68-year-old Carmen Sandoval climbed on the whole-body vibration machine in The University of Texas at El Paso’s Stanley E. Fulton Biomechanics and Motor Behavior Laboratory, she wasn’t sure how standing on the machine while it oscillated for five minutes was going to help improve her physical fitness.

Two months later, Sandoval’s muscle strength and bone density have increased, and she feels lighter on her feet. That has helped her chase more fly balls while playing softball with Senior Moments, an El Paso women’s slow-pitch softball team.

As part of the whole-body vibration study, Carmen Sandoval walks on a special treadmill, which simulates slipping by suddenly changing the moving direction of the belt. Participants are strapped into a harness to prevent injury. Photo by J.R. Hernandez / UTEP News Service

As part of the whole-body vibration study, Carmen Sandoval walks on a special treadmill, which simulates slipping by suddenly changing the moving direction of the belt. Participants are strapped into a harness to prevent injury. Photo by J.R. Hernandez / UTEP News Service

“It gives me more blood circulation in my legs,” Sandoval said. “I feel more energized and I don’t feel heavy on my legs.”

Sandoval is taking part in one of two studies by Feng Yang, Ph.D., an assistant professor in the Department of Kinesiology at UTEP, who is researching the impact of whole-body vibration training on adults 65 years and older and on people with multiple sclerosis, or MS.

In whole-body vibration therapy, a person stands on a vibration platform. As the machine vibrates, the transmission of mechanical vibrations and oscillations to the human body forces all muscles to contract and relax tens of times each second, and leads to physiological and neuromuscular changes that can reduce falls among individuals at greater fall risk.

In November, Yang received a $78,148 grant from The Retirement Research Foundation to investigate if whole-body vibration training can prevent real-life falls in Hispanic older adults. His co-principal investigators are Loretta Dillon, DPT, clinical associate professor in the Department of Physical Therapy, and Xiaogang Su, Ph.D., associate professor in the Department of Mathematical Sciences.

Yang, along with Dillon and Su,  also were awarded a separate $43,297 pilot grant from the National Multiple Sclerosis Society to use the technique to study its effect on preventing falls in individuals with MS.

“Whole-body vibration is a relatively novel training approach which we can use to reduce the risk of falls for older adults or for people with movement disorders,” explained Yang, the lab’s director since 2013. “This vibration can increase muscle strength and improve the body balance and it can also improve the function in mobility, sensation, bone density and all those factors that are closely related to falls.”

The Centers for Disease Control and Prevention reports that falls are the leading cause of both fatal and nonfatal injuries among older adults, and the consequences of falls are very costly.

For his study, Yang developed an eight-week training program for 100 adults ages 65 years and older to investigate whether or not whole-body vibration training can reduce their risk of falling and if the training is still effective three months after they finish the program. Since June 2014, about 50 older adults have participated in the 18-month study.

Participants use the whole-body vibration machine for five minutes, three times a week for eight weeks.

To test if the training has improved their resistance to falls, participants walk on a special treadmill, which simulates a slipping sensation by suddenly changing the moving direction of the belt. Participants are strapped into a harness to prevent injury.

Thirty reflective markers are attached to their skin on different parts of the body, which allow their movements to be recorded using the lab’s eight-camera high-speed motion capture system. The captured motion data will be utilized to analyze the improvement in fall resistance skills resulting from the vibration training.

The goal is to see how a person regains balance after a slip without falling to the ground.

Carmen Sandoval stands on the whole body vibration machine in UTEP’s Biomechanics and Motor Behavior Laboratory. Feng Yang, kinesiology assistant professor, is studying the effects of whole-body vibration on adults 65 years and older and people with multiple sclerosis. Photo by J.R. Hernandez / UTEP News Service

Carmen Sandoval stands on the whole body vibration machine in UTEP’s Biomechanics and Motor Behavior Laboratory. Feng Yang, kinesiology assistant professor, is studying the effects of whole-body vibration on adults 65 years and older and people with multiple sclerosis. Photo by J.R. Hernandez / UTEP News Service

“It (feels) like when we really stumble because we don’t know when we’re going to stumble,” Sandoval said after the treadmill stopped suddenly and she was jolted backward before regaining her composure.

Yang also evaluates the participants’ progress by measuring their muscle strength, bone density, sensation, range of motion, fear of falling, and functional mobility. All participants’ real-life fall incidences also are monitored.

Yang said the results of the study so far have been encouraging. Besides the significant improvements in all risk factors of falls among the participants, their slip-related falls on the treadmill and the fall incidences in everyday living have been reduced by about 70 percent and 30 percent, respectively.

He is currently recruiting 40 participants for his multiple sclerosis study. The National Multiple Sclerosis Foundation estimates that more than 400,000 people in the U.S. have MS. This project has particular significance for the El Paso region, which has been identified as a nationally-recognized cluster of MS by the society.

“We also want to prevent falls for patients with MS because their fall risk is even higher,” Yang said. “Their muscles are weak, their balance and sensation are impaired and MS also affects their mobility. All of those factors contribute to falls.”

Through whole-body vibration training, Yang hopes to develop a training paradigm that involves the least amount of physical activity for individuals with MS to reduce their risk of falls.

Yang is looking for participants with mild to moderate MS who have fallen at least once in the past six months for his study. Participants will take part in whole-body vibration training for five minutes a day, three days a week for four weeks.

Before the training begins, participants will be assessed to determine how many times they have fallen in the last six months. Their fall risk factors, including body balance, functional mobility, muscle strength, fear of falling and sensorimotor skills, also will be evaluated before and after the training to document any improvement.

Yang and his collaborators also are planning to apply vibration therapy to individuals with other movement dysfunctions, such as stroke and Parkinson’s disease. The long-term goal of their research is to develop cost-efficient yet effective community-based fall prevention training programs and to reduce the costs to individuals and the health care system resulting from falls among the elderly and populations with movement impairments.

Helping Yang achieve that goal are 10 research assistants from the undergraduate and graduate kinesiology programs at UTEP. They include: Chelsea Villa, Joshua Padilla, Westin Humble, Amy Lucero, Joe Anthony Rodriguez, Carlos Lopez, Maria Sanchez, JaeEun Kim, Jose Munoz and Edson Estrada.

In January 2014, Villa began working with Yang in the biomechanics lab as an undergraduate research assistant. She graduated from UTEP in December 2014 and plans to start the Doctor of Physical Therapy program in May.

From gathering medical histories, testing the participants and analyzing data, Villa said her experience working with Yang will help prepare her to become a better physical therapist.

“I know how important clinical-based research is when applied to the real world,” Villa said. “That’s the whole reason why research is done: to see what works and what doesn’t. Sometimes we think something does work and then we do the research and it turns out that it doesn’t. I know now what information is important to analyze and what information is not.”

To participate in either study, contact Yang at 915-747-8228 or 915-747-6010 or by email at fyang@utep.edu.

Multiple Sclerosis

Positive effects of Galileo side-alternating vibration on MS

Multiple sclerosis (MS) is a complex, progressive inflammatory, degenerative, and autoimmune demyelinating disease of the central nervous system (CNS) that causes a wide range of signs and symptoms.  The most common signs and symptoms of MS are sensory changes, fatigue, balance disturbances, gait problems, spasticity, motor weakness, ataxia, and impaired muscular performance. Fatigue, often severe, affects about 85% of MS patients which causes decreased mobility, leads to impaired functional capacity and subsequently reduced physical activity and sporting. So this life style which reduces mobility can lead to secondary sequels such as obesity, osteoporosis, and/or cardiovascular damage.

The exposure to heat during the physical exercise can lead to worsening symptoms. Exercise programs must be designed to activate working muscles but avoid overload that results in conduction block.

Various forms of exercise training have been found to be well tolerated and to improve symptoms in people with MS. Traditionally, these programs have focused on aerobic exercise and resistance training, but, over the last several years, whole body vibration (WBV) has become increasingly popular as a method of exercise both for people with neurological disorders and for the general population.

Whole body vibration (WBV) is an efficient training method to improve muscle strength. It has been demonstrated that WBV is safe and an effective method for improving postural control in elderly subjects. In addition, studies have shown positive effects of WBV on postural control, balance, mobility, strength and endurance in MS.

To prevent exacerbation due to intense physical activity, moderate intensity exercise programs are suggested. The combination of resistance training with WBV can increase the severity of training without rapid increase of body temperature or cause fatigue that could induce exacerbation.

Consequences of MS:

  • Muscle weakness
  • Fatigue
  • Reduced capability and motivation to perform exercise / training
  • Secondary effects of immobility
  • Spasticity
  • Contractions

MS training goals:

  • Improve muscle force
  • Improve high muscle power (stair climbing, stand up from a chair)
  • Stretching to prevent contraction
  • Improve coordination (using less force but higher power)
  • Improve balance

What kind of training is needed?

  • Training of the neurological system and muscle system
  • Reflex based (independent of motivation)
  • Not exhausting for the cardiovascular system
  • Training of neuromuscular communication as it is necessary for daily activities
  • Short training time
  • Low impact on joints, ligaments and tendon
  • Training stimulus has to be adjusted in a wide range because the degree of immobility in MS varies a lot.

Condition effects:

  • Improvement in timed up and go test
  • Improvement of chair rising
  • Improvement of balance
  • Higher gait speed and walking distance

Studies – Multiple Sclerosis

 

 

 

Aging, Balance & Fall Prevention

Side-alternating vibration exercise is safe and well tolerated in seniors to counteract the loss of balance, strength and power.   Preventing this age-associated side effect, or keeping its impact as low as possible is an effective means of training for fall-prevention.  Galileo-Training is a promising tool for the aging population because it’s easy to do for a population that may otherwise have a difficult time with traditional strength training.  Additionally, because it takes a short period of time compliance is enhanced preventing seniors from the vicious circle of pain generation caused by immobilization.

Senior Training

Senior Training

Condition Effects:

  • Maintain muscle mass and performance
  • Improvement in timed up and go test
  • Improved balance and fall prevention
  • Higher gait speed and walking distance
  • The avoidance of chronic back pain
  • Relaxation of muscle cramping

Studies – Fall Prevention

Poster:

  • Controlled Whole Body Vibration to Decrease Fall Risk and Improve Health Related Quality of Life in Elderly Patients. Fast and easy exercises, 3 times a week during 6 weeks, using a controlled whole body vibrations platform, could improve the quality of life, the walk, the balance and the motor capacity in elderly patients. The treatment group underwent 6 weeks of CWBV (4 – one minute series, 3 – times a week) on a vibrating platform (10 Hz in the first and third series and 27 Hz in the second and fourth ones). (O. Buyere, et al Poster Board #114, Presentation #1271 at the American College of Rheumatology Annual Scientific Meeting in Orlando, FL 2003).

Study Summaries:

  • WBV is a safe modality to increase physiological responses of reflex and muscle activity, and muscle function, for athletes, the aged, and compromised health. (Int J Sports Med. 2011
  • WBV training group had a significant lower risk of falls in females over 65 compared to a control group. Both exercise and WBV group had a significant increase in trunk strength and leg strength compared to the control group. (Z Gerontol Geriatr. 2010)
  • Improved elements of fall risk and “home related quality of life of nursing home” elderly patients. (Archives of Physical Medicine and Rehabilitation 2005)
  • High-frequency vibration training increases muscle power in postmenopausal women. Over 6 months, muscle power improved by about 5% in women who received the intervention, and it remained unchanged in controls (P=.004) Thus, reflex muscular contractions induced by vibration training improve muscle power in postmenopausal women.(Arch Phys Med Rehabil., 2003)

Sports & Fitness

Not only is Galileo a clinically proven method to improve speed and power development, but it has also been shown to enhance flexibility and circulation. This translates into not only sports performance gains, but also an increased rate of recovery from training and reduced injury risk.  The majority of studies done on muscular strength show that WBV training is at least as effective as traditional strength training, and perhaps even more so if the goal is an increase in power.

Treatment Goals

  • Improve Circulation to Tight Muscles
  • Flush out Metabolic Waste
  • Improve Flexibility and Joint Mobility
  • Improved Muscle Strength and Tone
  • Prevent Joint Stiffness
  • Reduce Pain
  • Enhance Post-Training Recovery time

The Scientific Basis of Training

The use of vibrations in an athletic setting offers new possibilities to coaching science. Resistance training effectiveness has been demonstrated due to the possibility of enhancing neuromuscular performance, power output, strength and hormonal profile. However, the time needed for these adaptations to occur is relatively long as compared to the possibilities offered by vibration treatments. It should be recognized however, that vibrations need to be viewed not as a substitute tool of resistance exercise but as a valid additional means to be implemented in a training routine in association with all the other traditional methodologies nowadays utilized.

WBV exercise training appears to be a viable alternative or, supplement to conventional resistance training for enhancing muscular fitness, bone density, and balance.  Also, it is used for a variety of things from both a static and dynamic movement perspective: muscle recovery and regeneration, strength, power and flexibility enhancement, and metabolic training.

Study Summaries:

  • Six weeks of WBV training produced significant changes in spring running kinematics and explosive strength performance. (Journal of Sports Science and Medicine 2007)
  • WBV training may increase vertical jump height. (Journal of Strength and Conditioning Research 2006)
  • WBV training was as effective in increasing strength in untrained females’ knee extensors as moderate resistance training. (Medicine & Science in Sports & Exercise 2003)
  • Acute Changes in Neuromuscular Excitability After Exhaustive Whole Body Vibration Exercise as Compared to Exhaustion by Squatting Exercise. The observed total exercise time, the changes in blood lactate and the RPE values suggest that a comparable degree of exhaustion and muscular fatigue was reached more rapidly with vibration than without. This becomes plausible when considering that whole-body vibration increases the oxygen consumption when applied in addition to the squatting exercise (Rittweger et al., 2001). A substantial correlation was observed between the individual exercise times with or without vibration, indicating a contribution of the individual resistance to fatigue for both types of exercise. (J. Rittweger, et. al.; Clinical Physiology & Functional Imaging, 2003).
  • In a few words, vibrations can stimulate the biological system of athletes in the same way as strength training or explosive training and this stimulation can be applied in a much shorter period of time as compared to the time needed to perform traditional training sessions. This opens a new window in sports science and gives coaches and scientists new possibilities for studying and enhancing human performance.The regular use of centrifugal force (2 g) for 3 months has initiated conversion of muscle fibre type (Martin and Romond, 1975). In the experiments conducted, the total length of the WBV application period was not very long (from 7 minutes to 100 minutes), but the disturbance to the gravitational field was quite consistent (5.4 g). An equivalent length and intensity of training stimulus (100 minutes) can only be reached by performing 200 drop jumps from 60 cm, twice a week for 12 months. In fact, the time spent for each drop jump is less than 200 ms, and the acceleration developed can barely reach 3.0 g (Bosco. 1992). This means stimulating the muscles for 2 min per week for a total amount in one year of 108 minutes.
  • The improvement of the muscle performance after a short period of vibration training has been quoted (Bosco et al. 1998) to be similar to what occurs after several weeks of heavy resistance training (e.g. Coyle et al. 1981, Hakkinen and Komi 1985). In fact the improvement of the muscle functions after resistance training has been attributed to the enhancement of the neuromuscular behaviour caused by the increasing activity of the higher motor centre (Milner -Brownet al., 1975). The improvement of muscle performances induced by VT suggests that a neural adaptation has occurred in response to the vibration treatments. In this context, the duration of the stimulus seems to be both relevant and important. The adaptive response of human skeletal muscle to simulated hyper-gravity conditions applied for only three weeks, caused a considerable improvement in the leg extensor muscle behavior (Bosco. 1985). Thus it is likely that both neural adaptation and the length of the stimulus seem to play an important role in the improvement of muscle performances (e.g. Bosco, 1985, 1988).
  • Adaptive Responses of Human Skeletal Muscle to Vibration Exposure. In the present experiment, even if the total length of the vibration training application period was only 10 minutes, the perturbation of the gravitation field was rather consistent (2.7g). An equivalent length and intensity of training stimulus can be reached only by performing 150 leg presses or half squats with extra loads of 3 times body weight, twice a week for 5 weeks. (C. Bosco, et. al., Clin. Physiol. 1999)
  • The facilitation of the excitability of the spinal reflex has been elicited through vibration of the quadriceps muscle (Burke et al., 1996). Lebedev and Peliakov (1991) have aIso suggested the possibility that vibrations may elicit excitatory inflow through muscle spindle-motoneurons connections in the overall motoneuron inflow.
  • It has been shown that the vibration-induced activation of muscle spindle receptors not only affects the muscle to which vibration is applied, but also affects the neighboring muscles (Kasai et. al., 1992). A mechanical vibration (10-200 Hz), applied to the muscle belly or tendon can elicit a reflex contraction (Hagbarth and Eklund, 1965). This response has been named “tonic vibration reflex” (1VR).
  • Vertical jumping ability has been shown to increase following vibration treatment (Bosco et al. 1998; Bosco et al. In-press). These improvements have been attributed to an enhancement of neural activity in the leg extensor muscles, together with an enhancement of the proprioceptors’ feedback. During vibrations, the length of skeletal muscles changes slightly. The facilitation of the excitability of spinal reflexes has been shown to be elicited by vibrations applied to the quadriceps muscle (Burke et. al., 1996).

Vibration, Resistance & Vascular Occlusion

Int J Sports Med. 2011 Oct;32(10):781-7. doi: 10.1055/s-0031-1277215. Epub 2011 Aug 25.

Combined effects of whole-body vibration, resistance exercise, and vascular occlusion on skeletal muscle and performance.

Item F, Denkinger J, Fontana P, Weber M, Boutellier U, Toigo M.

Source: Exercise Physiology, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland.

Abstract

Purpose: The purpose of this study was to evaluate the effects of a new high-intensity training modality comprised of vibration exercise with superimposed resistance exercise and vascular occlusion (vibroX) on skeletal muscle and performance.

Method: Young untrained women were randomized to either train in a progressive mode on 3 days per week for 5 weeks ( N=12) or to maintain a sedentary lifestyle ( N=9). VibroX increased peak cycling power (+9%, P=0.001), endurance capacity (+57%, P=0.002), ventilatory threshold (+12%, P<0.001), and end-test torque (+15%, P=0.002) relative to the sedentary group.

Results:

  • Training load increased by 84.5% ( P<0.001) after vibroX.
  • The increases were paralleled by increases in myosin heavy chain type 1 vastus lateralis muscle fiber cross-sectional area (+14%, P=0.031) and proportion (+17%, P=0.015), thigh lean mass (+4%, P=0.001), capillary-to-fiber ratio (+14%, P=0.003), and cytochrome c oxidase activity.
  • Conversely, maximal values for oxygen consumption, cardiac output, isokinetic leg extension power and jumping power remained unaffected.
  • Notably, vastus lateralis muscle adaptations were achieved with a very low weekly training volume.

Conclusion:  We conclude that vibroX quickly increases muscle (fiber) size, capillarization, and oxidative potential, and markedly augments endurance capacity in young women.

PMID: 21870317 [PubMed – indexed for MEDLINE]

Video of training – 2:15 into the video Galileo starts the rest period

Stretch Reflexes

Eur J Appl Physiol (2010) 110:143–151 DOI 10.1007/s00421-010-1483-x  Accepted: 9 April 2010 / Published online: 24 April 2010 _ Springer-Verlag 2010

EMG activity during whole body vibration: motion artifacts or stretch reflexes?

Ramona Ritzmann • Andreas Kramer • Markus Gruber • Albert Gollhofer • Wolfgang Taube

Abstract

Purpose: The validity of electromyographic (EMG) data recorded during whole body vibration (WBV) is controversial. Some authors ascribed a major part of the EMG signal to vibration-induced motion artifacts while others have interpreted the EMG signals as muscular activity caused at least partly by stretch reflexes. The aim of this study was to explore the origin of the EMG signal during WBV using several independent approaches.

Method: In ten participants, the latencies and spectrograms of stretch reflex responses evoked by passive dorsiflexions in an ankle ergometer were compared to those of the EMG activity of four leg muscles during WBV. Pressure application to the muscles was used to selectively reduce the stretch reflex, thus permitting to distinguish stretch reflexes from other signals. To monitor motion artifacts, dummy electrodes were placed close to the normal electrodes.

Results: Strong evidence for stretch reflexes was found: the latencies of the stretch reflex responses evoked by dorsiflexions were almost identical to the supposed stretch reflex responses during vibration (differences of less than 1 ms). Pressure application significantly reduced the amplitude of both the supposed stretch reflexes during vibration (by 61 ± 17%, p\0.001) and the stretch reflexes in the ankle ergometer (by 56 ± 13%, p\0.01). The dummy electrodes showed almost no activity during WBV (7 ± 4% of the corresponding muscle’s iEMG signal). The frequency analyses revealed no evidence of motion artifacts.

Conclusion: The present results support the hypothesis of WBV-induced stretch reflexes. Contribution of motion artifacts to the overall EMG activity seems to be insignificant.

Keywords: Electromyography _ Afferent _Pressure application _ Frequency analysis _ Spectrogram _Latency

H-Reflex, Stretch Reflex & Short-Latency

Scand J Med Sci Sports, 2011

The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping.

Ritzmann R, Kramer A, Gollhofer A, Taube W
Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany.

Abstract

The effect of whole body vibration (WBV) on reflex responses is controversially discussed in the literature.

PURPOSE:  In this study, three different modalities of reflex activation with increased motor complexity have been selected to clarify the effects of acute WBV on reflex activation: 1) the electrically evoked H-reflex, 2) the mechanically elicited stretch reflex, and 3) the short-latency response (SLR) during hopping.

METHOD:  WBV-induced changes of the H-reflex, the stretch reflex, and the SLR during hopping were recorded in the soleus and gastrocnemius muscles and were analyzed before, during (only the H-reflex), immediately after, 5 min and 10 min after WBV.

RESULTS:  The main findings were that: 1)  the H-reflexes were significantly reduced during and at least up to 5 min after WBV, 2) the stretch reflex amplitudes were also significantly reduced immediately after WBV but recovered to their initial amplitudes within 5 min, and 3) the SLR during hopping showed no vibration-induced modulation.  With regard to the modalities with low motor complexities, the decreased H- and stretch reflex responses are assumed to point toward a reduced Ia afferent transmission during and after WBV. However, it is assumed that during hopping, the suppression of reflex sensitivity is compensated by facilitatory mechanisms in this complex motor task.

PMID: 22011018

Acute Effects of Whole Body Vibration on Soleus H-Reflex

International Journal of Physiotherapy and Rehabilitation, October 2010, Vol. 1, Issue 1, 30-40

Acute Effects of Whole Body Vibration on Rate of Force Development and Electromechanical Delay.

Junggi Hong Assistant Professor, Department of Exercise Science, Willamette University.  K. Kipp, Dept of PM&R University of Michigan. S.T. Johnson & M.A. Hoffman University of Oregon State

ABSTRACT

Background: The ability to generate rapid and powerful muscle contractions within a short period of time is an important factor for both enhancing sports performance and preventing injuries. Recently, whole-body vibration (WBV) has been introduced as a novel training method designed to produce neuromuscular improvement similar to that of power and strength training. However, to date there are only limited data on the acute effects of WBV on the neuromuscular system. Furthermore, there is little understanding about the responsiveness of the neuromuscular system to acute exposure WBV.

Research question: The present study examined the effect of acute WBV training on the rate of force development (RFD) and electromechanical delay (EMD) in the soleus muscle.

Type of study: Randomized controlled study.

Methods: Forty young individuals with no leg injuries were randomly assigned to an experimental or control group. The experimental group received acute WBV (3 bouts of 2 minutes). The control group adopted the same position (squat position) on the vibration platform for an equal time but received no vibration.

Results: The experimental (WBV) group demonstrated a significant group °— time interaction for the rate of force development (RFD) and electromechanical delay (EMD) representing 15.6% (from 274Nm/sec to 323 Nm/sec) and 16% (from 23.42 ms to 19.3 ms) improvement.

Conclusions: It appears that acute WBV enhances RFD and EMD of the soleus musclin young healthy subjects.

KEY WORDS: Whole body vibration, Neurological adaptation, Rate of force development, Electromechanical delay, EMG

Exhaustive Vibration Elicits Mild Cardiovascular Exertion

Clin Physiol. 2000 Mar;20(2):134-42.

Acute physiological effects of exhaustive whole-body vibration exercise in man.

Rittweger J1, Beller G, Felsenberg D.

Abstract

Objective: Vibration exercise (VE) is a new neuromuscular training method which is applied in athletes as well as in prevention and therapy of osteoporosis.

Method: The present study explored the physiological mechanisms of fatigue by VE in 37 young healthy subjects. Exercise and cardiovascular data were compared to progressive bicycle ergometry until exhaustion. VE was performed in two sessions, with a 26 Hz vibration on a ground plate, in combination with squatting plus additional load (40% of body weight).

Results: After VE, subjectively perceived exertion on Borg’s scale was 18, and thus as high as after bicycle ergometry. Heart rate after VE increased to 128 min-1, blood pressure to 132/52 mmHg, and lactate to 3.5 mM. Oxygen uptake in VE was 48.8% of VO2max in bicycle ergometry. After VE, voluntary force in knee extension was reduced by 9.2%, jump height by 9.1%, and the decrease of EMG median frequency during maximal voluntary contraction was attenuated. The reproducibility in the two VE sessions was quite good: for heart rate, oxygen uptake and reduction in jump height, correlation coefficients of values from session 1 and from session 2 were between 0.67 and 0.7. Thus, VE can be well controlled in terms of these parameters. Surprisingly, an itching erythema was found in about half of the individuals, and an increase in cutaneous blood flow.

Conclusion: It follows that exhaustive whole-body VE elicits a mild cardiovascular exertion, and that neural as well as muscular mechanisms of fatigue may play a role.

PMID: 10735981

Increased Skeletal Muscle and Performance

Int J Sports Med. 2011 Oct;32(10):781-7. doi: 10.1055/s-0031-1277215. Epub 2011 Aug 25.

Combined effects of whole-body vibration, resistance exercise, and vascular occlusion on skeletal muscle and performance.

Item F1, Denkinger J, Fontana P, Weber M, Boutellier U, Toigo M.

Abstract

Objective: The purpose of this study was to evaluate the effects of a new high-intensity training modality comprised of vibration exercise with superimposed resistance exercise and vascular occlusion (vibroX) on skeletal muscle and performance.

Method: Young untrained women were randomized to either train in a progressive mode on 3 days per week for 5 weeks ( N=12) or to maintain a sedentary lifestyle ( N=9).

Results: VibroX increased peak cycling power (+9%, P=0.001), endurance capacity (+57%, P=0.002), ventilatory threshold (+12%, P<0.001), and end-test torque (+15%, P=0.002) relative to the sedentary group. Training load increased by 84.5% ( P<0.001) after vibroX. The increases were paralleled by increases in myosin heavy chain type 1 vastus lateralis muscle fiber cross-sectional area (+14%, P=0.031) and proportion (+17%, P=0.015), thigh lean mass (+4%, P=0.001), capillary-to-fiber ratio (+14%, P=0.003), and cytochrome c oxidase activity. Conversely, maximal values for oxygen consumption, cardiac output, isokinetic leg extension power and jumping power remained unaffected. Notably, vastus lateralis muscle adaptations were achieved with a very low weekly training volume.

Conclusion: We conclude that vibroX quickly increases muscle (fiber) size, capillarization, and oxidative potential, and markedly augments endurance capacity in young women.

© Georg Thieme Verlag KG Stuttgart · New York.

PMID: 21870317

 

Influence of Whole Body Vibration on Metabolic Power

Int J Sports Med. 2002 Aug;23(6):428-32.

Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load.

Rittweger J1, Ehrig J, Just K, Mutschelknauss M, Kirsch KA, Felsenberg D.

Abstract

Objective: Vibration exercise (VbX) is a new type of physical training to increase muscle power. The present study was designed to assess the influence of whole-body VbX on metabolic power.

Method: Specific oxygen uptake (sVO(2)) was assessed, testing the hypotheses that sVO(2) increases with the frequency of vibration (tested in 10 males) and with the amplitude (tested in 8 males), and that the VbX-related increase in sVO(2) is enhanced by increased muscle force (tested in 8 males). With a vibration amplitude of 5 mm, a linear increase in sVO(2) was found from frequencies 18 to 34 Hz (p < 0.01).

Results: Each vibration cycle evoked an oxygen consumption of approximately 2.5 micro l x kg(-1). At a vibration frequency of 26 Hz, sVO(2) increased more than proportionally with amplitudes from 2.5 to 7.5 mm. With an additional load of 40 % of the lean body mass attached to the waist, sVO(2) likewise increased significantly. A further increase was observed when the load was applied to the shoulders.

Conclusion: The present findings indicate that metabolic power in whole-body VbX can be parametrically controlled by frequency and amplitude, and by application of additional loads. These results further substantiate the view that VbX enhances muscular metabolic power, and thus muscle activity.

PMID: 12215962 [PubMed – indexed for MEDLINE]

WBV Increases Skin Blood Flow

Med Sci Monit. 2007 Feb;13(2):CR71-6.

The effect of whole body vibration on lower extremity skin blood flow in normal subjects.

Lohman EB 3rd1, Petrofsky JS, Maloney-Hinds C, Betts-Schwab H, Thorpe D.

Abstract

BACKGROUND:

Circulation plays a vital role in tissue healing. Increases in muscle flexibility and strength, secretion of hormones important in the regeneration and repair process, blood flow, and strength of bone tissues has been attributed to whole body vibration (WBV) combined with exercise. The purpose of the study was to determine the effects of short-duration, high-intensity, isometric weight bearing exercise (vibration exercise [VE]) and vibration only on skin blood flow (SBF).

MATERIAL/METHODS:

Forty-five subjects 18-43 years of age were randomly divided into three groups: Group 1 – VE, Group 2 – exercise only, and Group 3 – vibration only. SBF was measured using a laser Doppler imager at three time intervals: 1) initial base line, 2) immediately following intervention, and 3) 10-minutes following intervention.

RESULTS:

There was no significant difference between the three groups’ SBF prior to intervention. Immediately following the intervention a difference among groups was found. Post hoc testing revealed that Group 3 subjects‘ mean SBF was significantly increased at both post-intervention time intervals.

CONCLUSION:

The study findings suggest that short duration vibration alone significantly increases SBF; doubling mean SBF for a minimum of 10 minutes following intervention. The emerging therapeutic modality of WBV as a passive intervention appears to increase SBF in individuals with healthy microcirculation.

PMID: 17261985

Rapid Rise in Muscle Force

International Journal of Physiotherapy and Rehabilitation, October 2010, Vol. 1, Issue 1, 30-40 / J. Hong, K. Kipp, S.T. Johnson, M.A.Hoffman / ˝2010, International Journal of Physiotherapy and Rehabilitation

Effects of 4 weeks whole body vibration on electromechanical delay, rate of force development, and presynaptic inhibition.

1) Department of Exercise Science, Willamette University, 900 State Street, Salem, OR 9730; 2) Department of Physical Medicine and Rehabilitation University of Michigan, 325 E. Eisenhower Ste. 100 Ann Arbor, MI 48109; 3) Department Nutrition and Exercise Science, Oregon State University 3, Corvallis OR 97331 / Email: jhong@willamette.edu

Abstract

Objective: Long-term functional changes after whole-body vibration (WBV) training have been attributed to adaptations in the neuromuscular system. The present study examined the effect of four weeks of WBV training on muscle function outcome variables [(rate of force development (RFD), electromechanical delay (EMD)], and spinal control mechanisms (pre-synaptic inhibition).

Method: Forty young individuals with no history of lower leg injuries were randomly assigned to an experimental or control group. The experimental group received WBV training (three bouts of two minutes, three times a week) for four weeks. During each of the training sessions, the subjects stood on the vibration platform with the knees slightly flexed. The control group performed periods of standing in the same position as the experimental subjects.

Results: After four weeks of WBV training, the experimental (WBV) group demonstrated a significant improvement in electromechanical delay (EMD). The results also showed a significant group Å~ test interaction for RFD and intrinsic pre-synaptic inhibition (IPI) over the course of the study.

Conclusion: Enhanced neuromuscular activation (EMD and RFD) and increased spinal reflex gain followed by 4 weeks of WBV training indicate that WBV training might be used not only for athletes engaged in sports that require explosive type of muscular activation, but also for the elderly individual who need to exert a rapid rise in muscle force in injury related situations.

Keywords: whole body vibration, neurological adaptation, rate of force development, electromechanical delay, pre-synaptic inhibition, H-reflex

Galileo Whole Body Vibration Improves Diabetic Neuropathy

Tohoku J Exp Med, 2013; 231(4): 305-14, PMID: 24334483

Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy.

Lee K, Lee S, Song C
Department of Physical Therapy, Sahmyook University.

Abstract

Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy.

Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 x 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training.

The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed:

  • Postural sway and one leg stance (OLS) for static balance
  • Berg balance scale (BBS)
  • Timed up-and-go (TUG) test
  • Functional reach test (FRT) for dynamic balance
  • Five-times-sit-to-stand (FTSTS) test for muscle strength
  • HbA1c for predicting the progression of diabetes.

Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05).

Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.

Improve Balance Control & Muscle Endurance

PLoS One, 2014; 9 (2): e89905

Whole body vibration training – improving balance control and muscle endurance

Ritzmann R, Kramer A, Bernhardt S, Golhofer A

Source: Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany.

Abstract

Objective: Exercise combined with whole body vibration (WBV) is becoming increasingly popular, although additional effects of WBV in comparison to conventional exercises are still discussed controversially in literature. Heterogeneous findings are attributed to large differences in the training designs between WBV and “control” groups in regard to training volume, load and type.

Study overview: In order to separate the additional effects of WBV from the overall adaptations due to the intervention, in this study, a four-week WBV training setup was compared to a matched intervention program with identical training parameters in both training settings except for the exposure to WBV. In a repeated-measures matched-subject design, 38 participants were assigned to either the WBV group (VIB) or the equivalent training group (CON). Training duration, number of sets, rest periods and task-specific instructions were matched between the groups.

Main outcome measure: Balance, jump height and local static muscle endurance were assessed before and after the training period.

Results:  The statistical analysis revealed significant interaction effects of group x time for balance and local static muscle endurance (p<0.05). Hence, WBV caused an additional effect on balance control (pre vs. post VIB +13%, p<0.05 and CON +6%, p = 0.33) and local static muscle endurance (pre vs. post VIB +36%, p<0.05 and CON +11%, p = 0.49). The effect on jump height remained insignificant (pre vs. post VIB +3%, p = 0.25 and CON +/-0%, p = 0.82).

Summary: This study provides evidence for the additional effects of WBV above conventional exercise alone. As far as balance and muscle endurance of the lower leg are concerned, a training program that includes WBV can provide supplementary benefits in young and well-trained adults compared to an equivalent program that does not include WBV.

PMID: 24587114

Effect of WBV on Spinal Loads.

Eur Spine J. 2014 Mar;23(3):666-72. doi: 10.1007/s00586-013-3087-8. Epub 2013 Nov 8.

In vivo measurements of the effect of whole body vibration on spinal loads

Rohlmann A1, Schmidt H, Gast U, Kutzner I, Damm P, Bergmann G.

Abstract

PURPOSE:  It is assumed that whole body vibration (WBV) improves muscle strength, bone density, blood flow and mobility and is therefore used in wide ranges such as to improve fitness and prevent osteoporosis and back pain. It is expected that WBV produces large forces on the spine, which poses a potential risk factor for the health of the spine. Therefore, the aim of the study was to measure the effect of various vibration frequencies, amplitudes, device types and body positions on the loads acting on a lumbar vertebral body replacement (VBR).

METHODS:  Three patients suffering from a fractured lumbar vertebral body were treated using a telemeterized VBR. The implant loads were measured during WBV while the patients stood on devices with vertically and seesaw-induced vibration. Frequencies between 5 and 50 Hz and amplitudes of 1, 2 and 4 mm were tested. The patients stood with their knees straight, slightly bent, or bent at 60°. In addition, they stood on their forefeet.

RESULTS:  The peak resultant forces on the implant increased due to vibration by an average of 24% relative to the forces induced without vibration. The average increase of the peak implant force was 27% for vertically induced vibration and 15% for seesaw vibration. The forces were higher when the legs were straight than when the knees were bent. Both the vibration frequency and the amplitude had only a minor effect on the measured forces.CompareForcesPPvsG

CONCLUSIONS:  The force increase due to WBV is caused by an activation of the trunk muscles and by the acceleration forces. The forces produced during WBV are usually lower than those produced during walking. Therefore, the absolute magnitude of the forces produced during WBV should not be harmful, even for people with osteoporosis.

PMID: 24201510 [PubMed – in process]
PMCID: PMC3940795

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940795/pdf/586_2013_Article_3087.pdf

 

 

 

Skeletal Muscle and Performance

Int J Sports Med. 2011 Oct;32(10):781-7. doi: 10.1055/s-0031-1277215. Epub 2011 Aug 25

Combined Effects of Whole-Body Vibration, Resistance Exercise, and Vascular Occlusion on Skeletal Muscle and Performance

Item 1 , 2 , J. Denkinger 1 , P. Fontana 1 , 3 , M. Weber 4 , U. Boutellier 1 , 2 , M. Toigo 1 , 2 , 3

Affiliations

  1. Exercise Physiology, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
  2. Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
  3. Exersciences gmbh, Zurich, Switzerland
  4. Department of Visceral and Transplantation Surgery, University Hospital Zurich, Switzerland

Abstract

Purpose: The purpose of this study was to evaluate the effects of a new high-intensity training modality comprised of vibration exercise with superimposed resistance exercise and vascular occlusion (vibroX) on skeletal muscle and performance.

Method: Young untrained women were randomized to either train in a progressive mode on 3 days per week for 5 weeks ( n = 12) or to maintain a sedentary lifestyle ( n = 9).

Results: VibroX increased peak cycling power ( + 9 % , P = 0.001), endurance capacity ( + 57 %, P = 0.002), ventilatory threshold ( + 12 % , P < 0.001), and end-test torque( + 15 % , P = 0.002) relative to the sedentary group. Training load increased by 84.5 % ( P < 0.001) after vibroX. The increases were paralleled by increases in myosin heavy chain type 1 vastus lateralis muscle fiber cross-sectional area ( + 14 %, P = 0.031) and proportion ( + 17 % , P = 0.015), thigh lean mass    ( + 4 % , P = 0.001), capillary-to fiber ratio ( + 14 % , P = 0.003), and cytochrome c oxidase activity. Conversely, maximal values for oxygen consumption, cardiac output, isokinetic leg extension power and jumping power remained unaffected. Notably, vastus lateralis muscle adaptations were achieved with a very low weekly training volume.

Conclusion: We conclude that vibroX quickly increases muscle (fi ber) size, capillarization, and oxidative potential, and markedly augments endurance capacity in young women.